Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Int Immunopharmacol ; 132: 111965, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38583242

RESUMEN

Phosgene is a type of poisonous gas that can cause acute lung injury (ALI) upon accidental exposure. Casualties still occur due to phosgene-induced acute lung injury (P-ALI) from accidents resulting from improper operations. The pathological mechanisms of P-ALI are still understudied. Thus, we performed scRNA-seq on cells isolated from all subpopulations of the BALF in P-ALI and found that Gal3 expression was significantly higher in the gas group than in the control group. Further analysis revealed a ligand-receptor correspondence between alveolar macrophages (AMs) and alveolar epithelial cells (AEC), with Gal3 playing a key role in this interaction. To confirm and elaborate on this discovery, we selected four time points during the previous week: sham (day 0), day 1, day 3, and day 7 in the P-ALI mouse model and found that Gal3 expression was significantly elevated in P-ALI, most abundantly expressed in AM cells. This was further confirmed with the use of a Gal3 inhibitor. The inhibition of Gal3 and elimination of AMs in mice both attenuated epithelial cell pyroptosis, as confirmed in in vitro experiments, and revealed the Gal3/caspase-8/GSDMD signaling pathway. These findings suggest that Galectin-3 inhibition can ameliorate AEC pyroptosis by inhibiting the Gal3/caspase-8/GSDMD signaling pathway, thus reducing alveolar damage in mice with P-ALI. This finding provides novel insights for improving treatment efficacy for P-ALI.


Asunto(s)
Lesión Pulmonar Aguda , Células Epiteliales Alveolares , Galectina 3 , Ratones Endogámicos C57BL , Fosgeno , Piroptosis , Animales , Humanos , Masculino , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Sustancias para la Guerra Química/toxicidad , Modelos Animales de Enfermedad , Galectina 3/metabolismo , Galectina 3/genética , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Fosgeno/toxicidad , Piroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
2.
Environ Pollut ; 341: 122859, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37925007

RESUMEN

The solidification/stabilization of heavy metals and valuable component recovery from municipal solid waste incineration (MSWI) fly ash are of great significance for its safe disposal. In this study, MSWI fly ash was transformed into a new solid phase mainly composed of ettringite, achieving the solidification of excessive heavy metal Pb while obtaining a mixed solution of sodium chloride and potassium chloride with extremely low impurity content, which can be recovered by evaporation-crystallization respectively. The solidification mechanism of heavy metal Pb by ettringite was investigated through a combination of DFT calculations and experiments. The results indicate that a high conversion rate of calcium ions (99.68%), separation rate of chloride (95.99%), and conversion rate of heavy metal Pb (99.42%) can be achieved by controlling the ions ratio of the MSWI fly ash reaction system to n(Ca2+):n(Al3+):n(SO42-) = 6:2:3. DFT calculations show that the reaction pathway of the formation of a vacancy-Pb entering the vacancy at the Ca-2 site of ettringite is more likely to occur. The substitution of heavy metal Pb at the Ca-2 site leads to an increase in the unit cell volume, redistribution of charges, and a decrease in the thermal stability of the ettringite. The solidified body of ettringite presents a promising potential for application in cement-based materials due to its negligible risk of heavy metals leaching and low chloride content.


Asunto(s)
Metales Pesados , Eliminación de Residuos , Ceniza del Carbón , Residuos Sólidos , Cloruros , Sales (Química) , Plomo , Material Particulado , Carbono , Incineración , Metales Pesados/análisis
3.
Stem Cell Reports ; 18(10): 1940-1953, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37683644

RESUMEN

The maintenance of germline stem cells (GSCs) is essential for tissue homeostasis. JAK/STAT signaling maintains GSC fate in Drosophila testis. However, how JAK/STAT signaling maintains male GSC fate through its downstream targets remains poorly understood. Here, we identify p115, a tER/cis-Golgi golgin protein, as a putative downstream target of JAK/STAT signaling. p115 maintains GSC fate independent of GM130 and GRASP65. p115 localizes in cytosol, the ER and Golgi apparatus in germline cells and is required for the morphology of the ER and Golgi apparatus. Furthermore, depletion of p115 in GSCs results in aberrant spindle orientation. Mechanistically, p115 associates with and stabilizes STAT. Finally, ectopic expression of STAT completely restores GSC loss caused by p115 depletion. Collectively, JAK/STAT signaling and p115 form a feedforward loop to maintain male GSC fate. Our work provides new insights into the regulatory mechanism of how stem cell maintenance is properly controlled by JAK/STAT signaling.


Asunto(s)
Proteínas de Drosophila , Células Germinativas , Células Madre , Animales , Masculino , Drosophila melanogaster , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factores de Transcripción STAT/metabolismo , Células Madre/metabolismo , Transducción de Señal , Quinasas Janus/metabolismo
4.
J Inflamm Res ; 16: 2129-2147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37220504

RESUMEN

Purpose: Chemically induced acute lung injury (CALI) has become a serious health concern in our industrialized world, and abnormal functional alterations of immune cells crucially contribute to severe clinical symptoms. However, the cell heterogeneity and functional phenotypes of respiratory immune characteristics related to CALI remain unclear. Methods: We performed scRNA sequencing on bronchoalveolar lavage fluid (BALF) samples obtained from phosgene-induced CALI rat models and healthy controls. Transcriptional data and TotalSeq technology were used to confirm cell surface markers identifying immune cells in BALF. The landscape of immune cells could elucidate the metabolic remodeling mechanism involved in the progression of acute respiratory distress syndrome and cytokine storms. We used pseudotime inference to build macrophage trajectories and the corresponding model gene expression changes, and identified and characterized alveolar cells and immune subsets that may contribute to CALI pathophysiology based on gene expression profiles at single-cell resolution. Results: The immune environment of cells, including dendritic cells and specific macrophage subclusters, exhibited increased function during the early stage of pulmonary tissue damage. Nine different subpopulations were identified that perform multiple functional roles, including immune responses, pulmonary tissue repair, cellular metabolic cycle, and cholesterol metabolism. Additionally, we found that individual macrophage subpopulations dominate the cell-cell communication landscape. Moreover, pseudo-time trajectory analysis suggested that proliferating macrophage clusters exerted multiple functional roles. Conclusion: Our findings demonstrate that the bronchoalveolar immune microenvironment is a fundamental aspect of the immune response dynamics involved in the pathogenesis and recovery of CALI.

5.
Biomed Pharmacother ; 162: 114654, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37018988

RESUMEN

Accidental exposure to phosgene can cause acute lung injury (ALI), characterized by uncontrolled inflammation and impaired lung blood-gas barrier. CD34+CD45+ cells with high pituitary tumor transforming gene 1 (PTTG1) expression were identified around rat pulmonary vessels through single-cell RNA sequencing, and have been shown to attenuate P-ALI by promoting lung vascular barrier repair. As a transcription factor closely related to angiogenesis, whether PTTG1 plays a role in CD34+CD45+ cell repairing the pulmonary vascular barrier in rats with P-ALI remains unclear. This study provided compelling evidence that CD34+CD45+ cells possess endothelial differentiation potential. Rats with P-ALI were intratracheally administered with CD34+CD45+ cells transfected with or without PTTG1-overexpressing and sh-PTTG1 lentivirus. It was found that CD34+CD45+ cells reduced the pulmonary vascular permeability and mitigated the lung inflammation, which could be reversed by knocking down PTTG1. Although PTTG1 overexpression enhanced the ability of CD34+CD45+ cells to attenuate P-ALI, no significant difference was found. PTTG1 was found to regulate the endothelial differentiation of CD34+CD45+ cells. In addition, knocking down of PTTG1 significantly reduced the protein levels of VEGF and bFGF, as well as their receptors, which in turn inhibited the activation of the PI3K/AKT/eNOS signaling pathway in CD34+CD45+ cells. Moreover, LY294002 (PI3K inhibitor) treatment inhibited the endothelial differentiation of CD34+CD45+ cells, while SC79 (AKT activator) yielded the opposite effect. These findings suggest that PTTG1 can promote the endothelial differentiation of CD34+CD45+ cells by activating the VEGF-bFGF/PI3K/AKT/eNOS signaling pathway, leading to the repair of the pulmonary vascular barrier in rats with P-ALI.


Asunto(s)
Lesión Pulmonar Aguda , Fosgeno , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal
6.
J Phycol ; 59(1): 249-263, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36453855

RESUMEN

Saccharina japonica is an ecologically and economically important kelp in cold-temperate regions. When it is cultivated on a large scale in the temperate and even subtropical zones, heat stress is a frequent abiotic stress. This study is the first attempt to reveal the regulatory mechanism of the response to heat stress from the perspective of DNA methylation in S. japonica. We firstly obtained the characteristics of variation in the methylome under heat stress, and observed that heat stress caused a slight increase in the overall methylation level and methylation rate, especially in the non-coding regions of the genome. Secondly, we noted that methylation was probably one of factors affecting the expression of genes, and that methylation within the gene body was positively correlated with the gene expression (rho = 0.0784). Moreover, it was found that among the differentially expressed genes regulated by methylation, many genes were related to heat stress response, such as HSP gene family, genes of antioxidant enzymes, genes related to proteasome-ubiquitination pathway, and plant cell signaling pathways. This study demonstrated that DNA methylation is involved in regulating the response to heat stress, laying a foundation for studying the acclimation and adaptation of S. japonica to heat stress from an epigenetic perspective.


Asunto(s)
Metilación de ADN , Laminaria , Epigénesis Genética , Respuesta al Choque Térmico/genética , Aclimatación/genética
7.
J Clin Monit Comput ; 37(1): 55-62, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35441943

RESUMEN

BACKGROUND: Lidocaine administered through the working channel of a flexible bronchoscope can provide effective local anesthesia but cannot achieve good distribution in the airway. This study was undertaken to determine whether lidocaine delivered via a multi-orifice epidural catheter (three orifices/openings) is superior to conventional method and if a better distribution and decreased the cough reflex can be achieved. METHODS: The patients (N = 100; 50 in each group) were randomized to receive either topical airway anesthesia by the "spray-as-you-go" technique via conventional application (group C) through the working channel of the bronchoscope or via a triple-orifice epidural catheter (group E). The primary outcome measurement was the cough severity, which was documented using a 4-point scale. Bronchoscopists and nurses assessed the coughing. The visual analogue scale (VAS) score for cough, total consumption of propofol and lidocaine, requirement frequency of propofol and topical anesthesia, PACU retention time, and adverse events were also compared. RESULTS: There was a significant difference in the median cough severity scores between the two groups (group C: 3 vs. group E: 2, P = 0.004). The median visual analogue scale (VAS) scores for the cough, were significantly higher in group C than those in group E (bronchoscopist: 3 vs. 2 P = 0.002; nurse: 3 vs. 2, P < 0.001). The incidence of cough was significantly higher in group C in the trachea, left and right bronchi. The highest respiratory rate was higher in group C than in group E (P < 0.01). Eight patients in group C and two patients in group E had an oxygen saturation below 90% during flexible bronchoscopy(FB) (P = 0.046). More patients in group C required extra topical anesthesia than in group E (P < 0.001). The total lidocaine consumption was also higher in group C than that in group E (P < 0.001). CONCLUSIONS: Endotracheal topical anesthesia via the multi-orifice epidural catheter (three holes/openings) during flexible bronchoscopy using the "spray-as-you-go" technique was appeared to be superior to the conventional method.


Asunto(s)
Anestesia Local , Propofol , Humanos , Anestesia Local/métodos , Anestésicos Locales , Broncoscopía/métodos , Tos/inducido químicamente , Lidocaína , Catéteres
8.
J Inflamm Res ; 15: 5235-5246, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120184

RESUMEN

Acute respiratory distress syndrome (ARDS) presents as a form of acute respiratory failure resulting from non-cardiogenic pulmonary edema due to excessive alveolocapillary permeability, which may be pulmonary or systemic in origin. In the last 3 years, the coronavirus disease 2019 pandemic has resulted in an increase in ARDS cases and highlighted the challenges associated with this syndrome, as well as the unacceptably high mortality rates and lack of effective treatments. Currently, clinical treatment remains primarily supportive, including mechanical ventilation and drug-based therapy. Mesenchymal stem cell (MSC) therapies are emerging as a promising intervention in patients with ARDS and have promising therapeutic effects and safety. The therapeutic mechanisms include modifying the immune response and assisting with tissue repair. This review provides an overview of the general properties of MSCs and outlines their role in mitigating lung injury and promoting tissue repair in ARDS. Finally, we summarize the current challenges in the study of translational MSC research and identify avenues by which the discipline may progress in the coming years.

9.
Plants (Basel) ; 11(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36015392

RESUMEN

Aureochrome (AUREO) is a kind of blue light photoreceptor with both LOV and bZIP structural domains, identified only in Stramenopiles. It functions as a transcription factor that responds to blue light, playing diverse roles in the growth, development, and reproduction of Stramenopiles. Most of its functions are currently unknown, especially in the economically important alga S. japonica farmed on a large scale. This study provided a comprehensive analysis of the characteristics of AUREO gene families in seven algae, focusing on the AUREOs of S. japonica. AUREO genes were strictly identified from seven algal genomes. Then AUREO phylogenetic tree was constructed from 44 conserved AUREO genes collected. These AUREO genes were divided into five groups based on phylogenetic relationships. A total of 28 genes unnamed previously were named according to the phylogenetic tree. A large number of different cis-acting elements, especially bZIP transcription factors, were discovered upstream of AUREO genes in brown algae. Different intron/exon structural patterns were identified among all AUREOs. Transcriptomic data indicated that the expression of Sj AUREO varied significantly during the different development stages of S. japonica gametophytes. Periodic rhythms of light induction experiments indicate that Sj AUREO existed in a light-dependent circadian expression pattern, differing from other similar studies in the past. This may indicate that blue light affects gametophyte development through AUREO as a light signal receptor. This study systematically identified and analyzed the AUREO gene family in seven representative brown algae, which lay a good foundation for further study and understanding of AUERO functions in agal growth and development.

10.
Small ; 18(38): e2202691, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35986434

RESUMEN

The richened reactive oxygen species (ROS) and their derived excessive inflammation at bone injured sites hinder osteogenesis of endosseous Ti-based implants. Herein, anti-oxidized polydopamine (PDA) is deposited on hydrothermal growth formed hydroxyapatite (HA) nanorods on Ti to form a core-shell structural nanorod-like array with HA as a core and PDA as an amorphous shell (PDA@HA), showing not only ROS scavenging ability but also near-infrared (NIR) light derived photo-thermal effects. PDA@HA suppresses inflammation based on its ROS scavenging ability to a certain extent, while periodic photo-thermal treatment (PTT) at a mild temperature (41 ± 1 °C) further accelerates the transition of the macrophages (MΦs) adhered to PDA@HA from the pro-inflammatory (M1) phenotype to the anti-inflammatory (M2) phenotype in vitro and in vivo. Transcriptomic analysis reveals that the activation of the PI3K-Akt1 signaling pathway is responsible for the periodic PTT induced acceleration of the M1-to-M2 transition of MΦs. Acting on mesenchymal stem cells (MSCs) with paracrine cytokines of M2 macrophages, PDA@HA with mild PTT greatly promote the osteogenetic functions of MSCs and thus osteogenesis. This work paves a way of employing mildly periodic PTT to induce a favorable immunomodulatory microenvironment for osteogenesis and provides insights into its underlying immunomodulation mechanism.


Asunto(s)
Durapatita , Osteogénesis , Citocinas/metabolismo , Durapatita/química , Humanos , Inflamación/metabolismo , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
11.
Front Mol Neurosci ; 15: 825390, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663266

RESUMEN

Objective: The LAMA5 gene encodes the laminin subunit α5, the most abundant laminin α subunit in the human brain. It forms heterotrimers with the subunit ß1/ß2 and γ1/γ3 and regulates neurodevelopmental processes. Genes encoding subunits of the laminin heterotrimers containing subunit α5 have been reported to be associated with human diseases. Among LAMAs encoding the laminin α subunit, LAMA1-4 have also been reported to be associated with human disease. In this study, we investigated the association between LAMA5 and epilepsy. Methods: Trios-based whole-exome sequencing was performed in a cohort of 118 infants suffering from focal seizures with or without spasms. Protein modeling was used to assess the damaging effects of variations. The LAMAs expression was analyzed with data from the GTEX and VarCards databases. Results: Six pairs of compound heterozygous missense variants in LAMA5 were identified in six unrelated patients. All affected individuals suffered from focal seizures with mild developmental delay, and three patients presented also spasms. These variants had no or low allele frequencies in controls and presented statistically higher frequency in the case cohort than in controls. The recessive burden analysis showed that recessive LAMA5 variants identified in this cohort were significantly more than the expected number in the East Asian population. Protein modeling showed that at least one variant in each pair of biallelic variants affected hydrogen bonds with surrounding amino acids. Among the biallelic variants in cases with only focal seizures, two variants of each pair were located in different structural domains or domains/links, whereas in the cases with spasms, the biallelic variants were constituted by two variants in the identical functional domains or both with hydrogen bond changes. Conclusion: Recessive LAMA5 variants were potentially associated with infant epilepsy. The establishment of the association between LAMA5 and epilepsy will facilitate the genetic diagnosis and management in patients with infant epilepsy.

12.
Comput Intell Neurosci ; 2022: 2743878, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35619760

RESUMEN

Mesenchymal stem cells (MSCs) have promising potential in the treatment of various diseases, such as the therapeutic effect of bone marrow-derived MSCs for phosgene-induced acute lung injury (P-ALI). However, MSC-related therapeutics are limited due to poor cell survival, requiring appropriate MSC delivery systems to maximise therapeutic capacity. Biomaterial RGD-hydrogel is a potential cell delivery vehicle as it can mimic the natural extracellular matrix and provide cell adhesion support. The application of RGD-hydrogel in the MSC treatment of respiratory diseases is scarce. This study reports that RGD-hydrogel has good biocompatibility and can increase the secretion of Angiopoietin-1, hepatocyte growth factor, epidermal growth factor, vascular endothelial cell growth factor, and interleukin-10 in vitro MSCs. The hydrogel-encapsulated MSCs could further alleviate P-ALI and show better cell survival in vivo. Overall, RGD-hydrogel could improve the MSC treatment of P-ALI by modulating cell survival and reparative activities. It is exciting to see more and more ways to unlock the therapeutic potential of MSCs.


Asunto(s)
Lesión Pulmonar Aguda , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Fosgeno , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/terapia , Animales , Médula Ósea/metabolismo , Hidrogeles/efectos adversos , Hidrogeles/metabolismo , Células Madre Mesenquimatosas/metabolismo , Oligopéptidos/efectos adversos , Oligopéptidos/metabolismo , Fosgeno/metabolismo , Fosgeno/toxicidad , Ratas
13.
Stem Cell Reports ; 17(5): 1120-1137, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35427486

RESUMEN

Adult tissue homeostasis is maintained by residential stem cells. The proliferation and differentiation of adult stem cells must be tightly balanced to avoid excessive proliferation or premature differentiation. However, how stem cell proliferation is properly controlled remains elusive. Here, we find that auxilin (Aux) restricts intestinal stem cell (ISC) proliferation mainly through EGFR signaling. aux depletion leads to excessive ISC proliferation and midgut homeostasis disruption, which is unlikely caused by defective Notch signaling. Aux is expressed in multiple types of intestinal cells. Interestingly, aux depletion causes a dramatic increase in EGFR signaling, with a strong accumulation of EGFR at the plasma membrane and an increased expression of EGFR ligands in response to tissue stress. Furthermore, Aux co-localizes and associates with EGFR. Finally, blocking EGFR signaling completely suppresses the defects caused by aux depletion. Together, these data demonstrate that Aux mainly safeguards EGFR activation to keep a proper ISC proliferation rate to maintain midgut homeostasis.


Asunto(s)
Proteínas de Drosophila , Animales , Auxilinas/metabolismo , Proliferación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Receptores ErbB/metabolismo , Intestinos , Receptores de Péptidos de Invertebrados/genética , Receptores de Péptidos de Invertebrados/metabolismo
14.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36613719

RESUMEN

Alveolar epithelial cells (AECs) play a role in chemically induced acute lung injury (CALI). However, the mechanisms that induce alveolar epithelial type 2 cells (AEC2s) to proliferate, exit the cell cycle, and transdifferentiate into alveolar epithelial type 1 cells (AEC1s) are unclear. Here, we investigated the epithelial cell types and states in a phosgene-induced CALI rat model. Single-cell RNA-sequencing of bronchoalveolar lavage fluid (BALF) samples from phosgene-induced CALI rat models (Gas) and normal controls (NC) was performed. From the NC and Gas BALF samples, 37,245 and 29,853 high-quality cells were extracted, respectively. All cell types and states were identified and divided into 23 clusters; three cell types were identified: macrophages, epithelial cells, and macrophage proliferating cells. From NC and Gas samples, 1315 and 1756 epithelial cells were extracted, respectively, and divided into 11 clusters. The number of AEC1s decreased considerably following phosgene inhalation. A unique SOX9-positive AEC2 cell type that expanded considerably in the CALI state was identified. This progenitor cell type may develop into alveolar cells, indicating its stem cell differentiation potential. We present a single-cell genome-scale transcription map that can help uncover disease-associated cytologic signatures for understanding biological changes and regeneration of lung tissues during CALI.


Asunto(s)
Lesión Pulmonar Aguda , Lesión Pulmonar , Fosgeno , Ratas , Animales , Modelos Animales de Enfermedad , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo , Pulmón/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales Alveolares/metabolismo , Lesión Pulmonar/metabolismo , Líquido del Lavado Bronquioalveolar , ARN/metabolismo
15.
J Genet Genomics ; 49(3): 195-207, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34547438

RESUMEN

Adult stem cells are critical for the maintenance of residential tissue homeostasis and functions. However, the roles of cellular protein homeostasis maintenance in stem cell proliferation and tissue homeostasis are not fully understood. Here, we find that Derlin-1 and TER94/VCP/p97, components of the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, restrain intestinal stem cell proliferation to maintain intestinal homeostasis in adult Drosophila. Depleting any of them results in increased stem cell proliferation and midgut homeostasis disruption. Derlin-1 is specifically localized in the ER of progenitors, and its C-terminus is required for its function. Interestingly, we find that increased stem cell proliferation is resulted from elevated ROS levels and activated JNK signaling in Derlin-1- or TER94-deficient progenitors. Further removal of reactive oxygen species (ROS) or inhibition of JNK signaling almost completely suppresses increased stem cell proliferation. Together, these data demonstrate that the ERAD pathway is critical for stem cell proliferation and tissue homeostasis. Thus, we provide insights into our understanding of the mechanisms underlying cellular protein homeostasis maintenance (ER protein quality control) in tissue homeostasis and tumor development.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de la Membrana , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Drosophila/genética , Drosophila/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Homeostasis , Proteínas de la Membrana/metabolismo , Proteína que Contiene Valosina/metabolismo
16.
Dev Biol ; 476: 294-307, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33940033

RESUMEN

During tumorigenesis, tumor cells interact intimately with their surrounding cells (microenvironment) for their growth and progression. However, the roles of tumor microenvironment in tumor development and progression are not fully understood. Here, using an established benign tumor model in adult Drosophila intestines, we find that non-cell autonomous autophagy (NAA) is induced in tumor surrounding neighbor cells. Tumor growth can be significantly suppressed by genetic ablation of autophagy induction in tumor neighboring cells, indicating that tumor neighboring cells act as tumor microenvironment to promote tumor growth. Autophagy in tumor neighboring cells is induced downstream of elevated ROS and activated JNK signaling in tumor cells. Interestingly, we find that active transport of nutrients, such as amino acids, from tumor neighboring cells sustains tumor growth, and increasing nutrient availability could significantly restore tumor growth. Together, these data demonstrate that tumor cells take advantage of their surrounding normal neighbor cells as nutrient sources through NAA to meet their high metabolic demand for growth and progression. Thus we provide insights into our understanding of the mechanisms underlying the interaction between tumor cells and their microenvironment in tumor development.


Asunto(s)
Autofagia/fisiología , Neoplasias/genética , Microambiente Tumoral/fisiología , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Humanos , Intestinos , Sistema de Señalización de MAP Quinasas , Neoplasias/metabolismo
17.
Emerg Microbes Infect ; 10(1): 939-953, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33929941

RESUMEN

Leptospirosis, caused by pathogenic Leptospira species, has emerged as a widespread zoonotic disease worldwide. Macrophages mediate the elimination of pathogens through phagocytosis and cytokine production. Scavenger receptor A1 (SR-A1), one of the critical receptors mediating this process, plays a complicated role in innate immunity. However, the role of SR-A1 in the immune response against pathogenic Leptospira invasion is unknown. In the present study, we found that SR-A1 is an important nonopsonic phagocytic receptor on murine macrophages for Leptospira. However, intraperitoneal injection of leptospires into WT mice presented with more apparent jaundice, subcutaneous hemorrhaging, and higher bacteria burdens in blood and tissues than that of SR-A1-/- mice. Exacerbated cytokine and inflammatory mediator levels were also observed in WT mice and higher recruited macrophages in the liver than those of SR-A1-/- mice. Our findings collectively reveal that although beneficial in the uptake of Leptospira by macrophage, SR-A1 might be exploited by Leptospira to modulate inflammatory activation and increase the susceptibility of infection in the host. These results provide our new insights into the innate immune response during early infection by L. interrogans.


Asunto(s)
Leptospira interrogans serovar autumnalis/inmunología , Leptospirosis/inmunología , Macrófagos Peritoneales/virología , Receptores Depuradores de Clase A/metabolismo , Animales , Células Cultivadas , Citocinas/metabolismo , Células HEK293 , Humanos , Leptospirosis/metabolismo , Macrófagos Peritoneales/citología , Macrófagos Peritoneales/inmunología , Ratones , Mutación , Células RAW 264.7 , Receptores Depuradores de Clase A/genética
18.
Science ; 372(6541): 512-516, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33926954

RESUMEN

DNA modifications vary in form and function but generally do not alter Watson-Crick base pairing. Diaminopurine (Z) is an exception because it completely replaces adenine and forms three hydrogen bonds with thymine in cyanophage S-2L genomic DNA. However, the biosynthesis, prevalence, and importance of Z genomes remain unexplored. Here, we report a multienzyme system that supports Z-genome synthesis. We identified dozens of globally widespread phages harboring such enzymes, and we further verified the Z genome in one of these phages, Acinetobacter phage SH-Ab 15497, by using liquid chromatography with ultraviolet and mass spectrometry. The Z genome endows phages with evolutionary advantages for evading the attack of host restriction enzymes, and the characterization of its biosynthetic pathway enables Z-DNA production on a large scale for a diverse range of applications.


Asunto(s)
2-Aminopurina/metabolismo , Adenilosuccinato Sintasa/química , Bacteriófagos/química , Bacteriófagos/enzimología , ADN Viral/química , ADN de Forma Z/química , Proteínas no Estructurales Virales/química , 2-Aminopurina/química , Adenilosuccinato Liasa/química , Adenilosuccinato Liasa/genética , Adenilosuccinato Liasa/metabolismo , Adenilosuccinato Sintasa/genética , Adenilosuccinato Sintasa/metabolismo , Bacteriófagos/genética , Emparejamiento Base , Vías Biosintéticas , ADN Viral/biosíntesis , ADN Viral/genética , ADN de Forma Z/biosíntesis , ADN de Forma Z/genética , Genoma Viral , Enlace de Hidrógeno , Dominios Proteicos , Especificidad por Sustrato , Timina/química , Timina/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
19.
Antibiotics (Basel) ; 10(2)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535705

RESUMEN

Carbapenem-resistant Klebsiella pneumoniae (CRKP), one of the major nosocomial pathogens, is increasingly becoming a serious threat to global public health. There is an urgent need to develop effective therapeutic and preventive approaches to combat the pathogen. Here, we identified and characterized a novel capsule depolymerase (K64-ORF41) derived from Klebsiella phage SH-KP152410, which showed specific activities for K. pneumoniae K64-serotype. We showed that this depolymerase could be used in the identification of K64 serotypes based on the capsular typing, and the results agreed well with those from the conventional serotyping method using antisera. From this study, we also identified K64 mutant strains, which showed typing discrepancy between wzi-sequencing based genotyping and depolymerase-based or antiserum-based typing methods. Further investigation indicated that the mutant strain has an insertion sequence (IS) in wcaJ, which led to the alteration of the capsular serotype structure. We further demonstrated that K64-ORF41 depolymerase could sensitize the bacteria to serum or neutrophil killing by degrading the capsular polysaccharide. In summary, the identified K64 depolymerase proves to be an accurate and reliable tool for capsular typing, which will facilitate the preventive intervention such as vaccine development. In addition, the polymerase may represent a potential and promising therapeutic biologics against CRKP-K64 infections.

20.
Mikrochim Acta ; 187(10): 574, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32964251

RESUMEN

A reliable electrochemical biosensor is reported based on nitrogen-doped graphene nanosheets and gold nanoparticle (Au/N-G) nanocomposites for the event-specific detection of GM maize MIR162. The differential pulse voltammetry response of methylene blue (MB) was chosen to monitor the target DNA hybridization event. Under the optimum conditions, the peak current increased linearly with the logarithm of the concentration of DNA in the range 1.0 × 10-14 to 1.0 × 10-8 M, and the detection limit was 2.52 × 10-15 M (S/N = 3). It is also demonstrated that the DNA biosensor has high selectivity, good stability, and fabrication reproducibility. The biosensor has been effectively applied to detect MIR162 in real samples, showing its potential as an effective tool for GM crop analysis. These results will contribute to the development of new portable transgenic detection systems. Graphical abstract .


Asunto(s)
ADN/química , Técnicas Electroquímicas/métodos , Grafito/química , Nanopartículas del Metal/química , Nitrógeno/química , Zea mays/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...